

Longest Common Subsequence

Kuan-Yu Chen (陳冠宇)

2019/04/23 @ TR-310-1, NTUST

Review

- The problem of matrix-chain multiplication
 - We are given a sequence (chain) $\{A_1, A_2, \dots, A_n\}$ of n matrices to be multiplied
 - Fully Parenthesized
 - For example, if the chain of matrices is $\{A_1, A_2, A_3, A_4\}$, then we can fully parenthesize the product $A_1A_2A_3A_4$ in five distinct ways
 - $(A_1(A_2(A_3A_4)))$
 - $(A_1((A_2A_3)A_4))$
 - $((A_1A_2)(A_3A_4))$
 - $((A_1(A_2A_3))A_4)$
 - $((((A_1A_2)A_3)A_4)$
 - Matrix multiplication is associative, and so all parenthesizations yield the same result

Longest-common-subsequence.

- Biological applications often need to compare the DNA of two (or more) different organisms (有機體)
 - A strand of DNA consists of a string of molecules called **bases**
 - Adenine, guanine, cytosine, and thymine
- One reason to compare two strands of DNA is to determine how “similar” the two strands are
 - We can define similarity in many different ways
 - $S_1 = \text{ACCGGTCGAGTGC}GCGGAAGCCGGCCGAA$
 - $S_2 = \text{GTCGTTCGGAATGCCGTTGCTCTGTAAA}$
 - A commonly used way to measure the similarity of strands S_1 and S_2 is by finding a third strand S_3 in which the bases in S_3 appear in each of S_1 and S_2
 - The longer the strand S_3 we can find, the more similar S_1 and S_2 are

Longest-common-subsequence..

- Formally, given a sequence $X = \{x_1, x_2, \dots, x_m\}$, another sequence $Z = \{z_1, z_2, \dots, z_k\}$ is a **subsequence** of X if there exists a strictly increasing sequence $\{i_1, i_2, \dots, i_k\}$ of indexes of X such that for all $j = 1, 2, \dots, k$, we have $x_{i_j} = z_j$
 - $X = \{A, B, C, B, D, A, B\}$
 - $Z = \{B, C, D, B\}$
 - $\{i_1, i_2, i_3, i_4\} = \{2, 3, 5, 7\}$
 - $x_{i_1} = x_2 = B$
 - $x_{i_2} = x_3 = C$
 - $x_{i_3} = x_5 = D$
 - $x_{i_4} = x_7 = B$

Longest-common-subsequence...

- Given two sequences X and Y , we say that a sequence Z is a ***common subsequence*** of X and Y if Z is a subsequence of both X and Y
 - $X = \{A, B, C, B, D, A, B\}$
 - $Y = \{B, D, C, A, B, A\}$
 - $Z = \{B, C, A\}$ is a common subsequence of both X and Y
 - It is worthy to note that $\{B, C, B, A\}$ is also a common subsequence of both X and Y
 - Since X and Y have no common subsequence of length 5 or greater, thus $\{B, C, B, A\}$ is an **longest-common-subsequence** of both X and Y

DP for LCS.

- For a given sequence $X = \{x_1, x_2, \dots, x_m\}$, we define the i -th prefix of X as $X_i = \{x_1, x_2, \dots, x_i\}$
 - $X = \{A, B, C, B, D, A, B\}$
 - $X_4 = \{A, B, C, B\}$
 - X_0 is the empty sequence
- Let $X = \{x_1, x_2, \dots, x_m\}$ and $Y = \{y_1, y_2, \dots, y_n\}$, and $Z = \{z_1, z_2, \dots, z_k\}$ is an LCS of both X and Y
 - If $x_m = y_n$, then $x_m = y_n = z_k$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
 - If $x_m \neq y_n$, then $x_m \neq z_k$ implies that Z is an LCS of X_{m-1} and Y
 - If $x_m \neq y_n$, then $y_n \neq z_k$ implies that Z is an LCS of X and Y_{n-1}

DP for LCS..

- Let $X = \{x_1, x_2, \dots, x_m\}$ and $Y = \{y_1, y_2, \dots, y_n\}$, and $Z = \{z_1, z_2, \dots, z_k\}$ is an LCS of both X and Y
 - If $x_m = y_n$, then $x_m = y_n = z_k$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
 - If $x_m \neq y_n$, then $x_m \neq z_k$ implies that Z is an LCS of X_{m-1} and Y
 - If $x_m \neq y_n$, then $y_n \neq z_k$ implies that Z is an LCS of X and Y_{n-1}
- Let's define $c[i, j]$ to be the length of an LCS of the sequences X_i and Y_j

$$c[i, j] = \begin{cases} 0, & \text{if } i = 0 \text{ or } j = 0 \\ c[i - 1, j - 1] + 1, & \text{if } i > 0 \text{ and } j > 0 \text{ and } x_i = y_j \\ \max(c[i, j - 1], c[i - 1, j]), & \text{if } i > 0 \text{ and } j > 0 \text{ and } x_i \neq y_j \end{cases}$$

DP for LCS...

- Thus, we can construct a LCS-LENGTH procedure
 - Two input sequences $X = \{x_1, x_2, \dots, x_m\}$ and $Y = \{y_1, y_2, \dots, y_n\}$
 - A table $c[0 \dots m, 0 \dots n]$ is to store the values $c[i, j]$
 - A table $b[1 \dots m, 1 \dots n]$ is to help us construct an optimal solution

LCS-LENGTH(X, Y)

```
1   $m = X.length$ 
2   $n = Y.length$ 
3  let  $b[1 \dots m, 1 \dots n]$  and  $c[0 \dots m, 0 \dots n]$  be new tables
4  for  $i = 1$  to  $m$ 
5     $c[i, 0] = 0$ 
6  for  $j = 0$  to  $n$ 
7     $c[0, j] = 0$ 
8  for  $i = 1$  to  $m$ 
9    for  $j = 1$  to  $n$ 
10   if  $x_i == y_j$ 
11      $c[i, j] = c[i - 1, j - 1] + 1$ 
12      $b[i, j] = “↖”$ 
13   elseif  $c[i - 1, j] \geq c[i, j - 1]$ 
14      $c[i, j] = c[i - 1, j]$ 
15      $b[i, j] = “↑”$ 
16   else  $c[i, j] = c[i, j - 1]$ 
17      $b[i, j] = “←”$ 
18 return  $c$  and  $b$ 
```

DP for LCS....

$$c[i, j] = \begin{cases} 0, & \text{if } i = 0 \text{ or } j = 0 \\ c[i - 1, j - 1] + 1, & \text{if } i > 0 \text{ and } j > 0 \text{ and } x_i = y_j \\ \max(c[i, j - 1], c[i - 1, j]), & \text{if } i > 0 \text{ and } j > 0 \text{ and } x_i \neq y_j \end{cases}$$

LCS-LENGTH(X, Y)

```
1   $m = X.length$ 
2   $n = Y.length$ 
3  let  $b[1..m, 1..n]$  and  $c[0..m, 0..n]$  be new tables
4  for  $i = 1$  to  $m$ 
5     $c[i, 0] = 0$ 
6  for  $j = 0$  to  $n$ 
7     $c[0, j] = 0$ 
8  for  $i = 1$  to  $m$ 
9    for  $j = 1$  to  $n$ 
10      if  $x_i == y_j$ 
11         $c[i, j] = c[i - 1, j - 1] + 1$ 
12         $b[i, j] = "\nwarrow"$ 
13      elseif  $c[i - 1, j] \geq c[i, j - 1]$ 
14         $c[i, j] = c[i - 1, j]$ 
15         $b[i, j] = "\uparrow"$ 
16      else  $c[i, j] = c[i, j - 1]$ 
17         $b[i, j] = "\leftarrow"$ 
18  return  $c$  and  $b$ 
```

Example.

- Given Two input sequences $X = \{A, B, C, B, D, A, B\}$ and $Y = \{B, D, C, A, B, A\}$, please find their LCS

j	0	1	2	3	4	5	6
i	y_j	B	D	C	A	B	A
x_i	0	0	0	0	0	0	0
0	0						
1	A	0					
2	B	0					
3	C	0					
4	B	0					
5	D	0					
6	A	0					
7	B	0					

LCS-LENGTH(X, Y)

```

1   $m = X.length$ 
2   $n = Y.length$ 
3  let  $b[1..m, 1..n]$  and  $c[0..m, 0..n]$  be new tables
4  for  $i = 1$  to  $m$ 
5     $c[i, 0] = 0$ 
6  for  $j = 0$  to  $n$ 
7     $c[0, j] = 0$ 
8  for  $i = 1$  to  $m$ 
9    for  $j = 1$  to  $n$ 
10   if  $x_i == y_j$ 
11      $c[i, j] = c[i - 1, j - 1] + 1$ 
12      $b[i, j] = \nwarrow$ 
13   elseif  $c[i - 1, j] \geq c[i, j - 1]$ 
14      $c[i, j] = c[i - 1, j]$ 
15      $b[i, j] = \uparrow$ 
16   else  $c[i, j] = c[i, j - 1]$ 
17      $b[i, j] = \leftarrow$ 
18 return  $c$  and  $b$ 

```

Example..

- Given Two input sequences $X = \{A, B, C, B, D, A, B\}$ and $Y = \{B, D, C, A, B, A\}$, please find their LCS

j	0	1	2	3	4	5	6
i	y_j	B	D	C	A	B	A
x_i	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	A	0	0				
2	B	0					
3	C	0					
4	B	0					
5	D	0					
6	A	0					
7	B	0					

LCS-LENGTH(X, Y)

```

1   $m = X.length$ 
2   $n = Y.length$ 
3  let  $b[1..m, 1..n]$  and  $c[0..m, 0..n]$  be new tables
4  for  $i = 1$  to  $m$ 
5     $c[i, 0] = 0$ 
6  for  $j = 0$  to  $n$ 
7     $c[0, j] = 0$ 
8  for  $i = 1$  to  $m$ 
9    for  $j = 1$  to  $n$ 
10   if  $x_i == y_j$ 
11      $c[i, j] = c[i - 1, j - 1] + 1$ 
12      $b[i, j] = \nwarrow$ 
13   elseif  $c[i - 1, j] \geq c[i, j - 1]$ 
14      $c[i, j] = c[i - 1, j]$ 
15      $b[i, j] = \uparrow$ 
16   else  $c[i, j] = c[i, j - 1]$ 
17      $b[i, j] = \leftarrow$ 
18 return  $c$  and  $b$ 

```

Example...

- Given Two input sequences $X = \{A, B, C, B, D, A, B\}$ and $Y = \{B, D, C, A, B, A\}$, please find their LCS

j	0	1	2	3	4	5	6
i	y_j	B	D	C	A	B	A
x_i	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	A	0	0	0	0	1	
2	B	0					
3	C	0					
4	B	0					
5	D	0					
6	A	0					
7	B	0					

LCS-LENGTH(X, Y)

```

1   $m = X.length$ 
2   $n = Y.length$ 
3  let  $b[1..m, 1..n]$  and  $c[0..m, 0..n]$  be new tables
4  for  $i = 1$  to  $m$ 
5     $c[i, 0] = 0$ 
6  for  $j = 0$  to  $n$ 
7     $c[0, j] = 0$ 
8  for  $i = 1$  to  $m$ 
9    for  $j = 1$  to  $n$ 
10   if  $x_i == y_j$ 
11      $c[i, j] = c[i - 1, j - 1] + 1$ 
12      $b[i, j] = \nwarrow$ 
13   elseif  $c[i - 1, j] \geq c[i, j - 1]$ 
14      $c[i, j] = c[i - 1, j]$ 
15      $b[i, j] = \uparrow$ 
16   else  $c[i, j] = c[i, j - 1]$ 
17      $b[i, j] = \leftarrow$ 
18 return  $c$  and  $b$ 

```

Example....

- Given Two input sequences $X = \{A, B, C, B, D, A, B\}$ and $Y = \{B, D, C, A, B, A\}$, please find their LCS

j	0	1	2	3	4	5	6
i	y_j	B	D	C	A	B	A
x_i	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	B	0					
3	C	0					
4	B	0					
5	D	0					
6	A	0					
7	B	0					

LCS-LENGTH(X, Y)

```

1   $m = X.length$ 
2   $n = Y.length$ 
3  let  $b[1..m, 1..n]$  and  $c[0..m, 0..n]$  be new tables
4  for  $i = 1$  to  $m$ 
5     $c[i, 0] = 0$ 
6  for  $j = 0$  to  $n$ 
7     $c[0, j] = 0$ 
8  for  $i = 1$  to  $m$ 
9    for  $j = 1$  to  $n$ 
10   if  $x_i == y_j$ 
11      $c[i, j] = c[i - 1, j - 1] + 1$ 
12      $b[i, j] = \nwarrow$ 
13   elseif  $c[i - 1, j] \geq c[i, j - 1]$ 
14      $c[i, j] = c[i - 1, j]$ 
15      $b[i, j] = \uparrow$ 
16   else  $c[i, j] = c[i, j - 1]$ 
17      $b[i, j] = \leftarrow$ 
18 return  $c$  and  $b$ 

```

Example.....

- Given Two input sequences $X = \{A, B, C, B, D, A, B\}$ and $Y = \{B, D, C, A, B, A\}$, please find their LCS

j	0	1	2	3	4	5	6
i	y_j	B	D	C	A	B	A
x_i	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	B	0					
3	C	0					
4	B	0					
5	D	0					
6	A	0					
7	B	0					

LCS-LENGTH(X, Y)

```

1   $m = X.length$ 
2   $n = Y.length$ 
3  let  $b[1..m, 1..n]$  and  $c[0..m, 0..n]$  be new tables
4  for  $i = 1$  to  $m$ 
5     $c[i, 0] = 0$ 
6  for  $j = 0$  to  $n$ 
7     $c[0, j] = 0$ 
8  for  $i = 1$  to  $m$ 
9    for  $j = 1$  to  $n$ 
10   if  $x_i == y_j$ 
11      $c[i, j] = c[i - 1, j - 1] + 1$ 
12      $b[i, j] = \nwarrow$ 
13   elseif  $c[i - 1, j] \geq c[i, j - 1]$ 
14      $c[i, j] = c[i - 1, j]$ 
15      $b[i, j] = \uparrow$ 
16   else  $c[i, j] = c[i, j - 1]$ 
17      $b[i, j] = \leftarrow$ 
18 return  $c$  and  $b$ 

```

Example.....

- Given Two input sequences $X = \{A, B, C, B, D, A, B\}$ and $Y = \{B, D, C, A, B, A\}$, please find their LCS

j	0	1	2	3	4	5	6
i	y_j	B	D	C	A	B	A
x_i	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	B	0	1	0	1	2	2
3	C	0					
4	B	0					
5	D	0					
6	A	0					
7	B	0					

LCS-LENGTH(X, Y)

```

1   $m = X.length$ 
2   $n = Y.length$ 
3  let  $b[1..m, 1..n]$  and  $c[0..m, 0..n]$  be new tables
4  for  $i = 1$  to  $m$ 
5     $c[i, 0] = 0$ 
6  for  $j = 0$  to  $n$ 
7     $c[0, j] = 0$ 
8  for  $i = 1$  to  $m$ 
9    for  $j = 1$  to  $n$ 
10   if  $x_i == y_j$ 
11      $c[i, j] = c[i - 1, j - 1] + 1$ 
12      $b[i, j] = \nwarrow$ 
13   elseif  $c[i - 1, j] \geq c[i, j - 1]$ 
14      $c[i, j] = c[i - 1, j]$ 
15      $b[i, j] = \uparrow$ 
16   else  $c[i, j] = c[i, j - 1]$ 
17      $b[i, j] = \leftarrow$ 
18 return  $c$  and  $b$ 

```

Example.....

- Given Two input sequences $X = \{A, B, C, B, D, A, B\}$ and $Y = \{B, D, C, A, B, A\}$, please find their LCS

j	0	1	2	3	4	5	6
i	y_j	B	D	C	A	B	A
x_i	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	B	0	1	1	1	2	2
3	C	0	1	1	2	2	2
4	B	0	1	1	2	2	3
5	D	0	1	2	2	2	3
6	A	0	1	2	2	3	4
7	B	0	1	2	2	3	4

LCS-LENGTH(X, Y)

```

1   $m = X.length$ 
2   $n = Y.length$ 
3  let  $b[1..m, 1..n]$  and  $c[0..m, 0..n]$  be new tables
4  for  $i = 1$  to  $m$ 
5     $c[i, 0] = 0$ 
6  for  $j = 0$  to  $n$ 
7     $c[0, j] = 0$ 
8  for  $i = 1$  to  $m$ 
9    for  $j = 1$  to  $n$ 
10   if  $x_i == y_j$ 
11      $c[i, j] = c[i - 1, j - 1] + 1$ 
12      $b[i, j] = “↖”$ 
13   elseif  $c[i - 1, j] \geq c[i, j - 1]$ 
14      $c[i, j] = c[i - 1, j]$ 
15      $b[i, j] = “↑”$ 
16   else  $c[i, j] = c[i, j - 1]$ 
17      $b[i, j] = “←”$ 
18 return  $c$  and  $b$ 

```

DP for LCS.....

- The PRINT-LCS is used to print the path
 - The initial call is $\text{PRINT-LCS}(b, X, X.length, Y.length)$

j	0	1	2	3	4	5	6
i	y_j	B	D	C	A	B	A
x_i	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	B	0	1	1	1	2	2
3	C	0	1	1	2	2	2
4	B	0	1	1	2	2	3
5	D	0	1	2	2	3	3
6	A	0	1	2	2	3	4
7	B	0	1	2	2	3	4

$\text{PRINT-LCS}(b, X, i, j)$

```

1  if  $i == 0$  or  $j == 0$ 
2      return
3  if  $b[i, j] == \nwarrow$ 
4      PRINT-LCS( $b, X, i - 1, j - 1$ )
5      print  $x_i$ 
6  elseif  $b[i, j] == \uparrow$ 
7      PRINT-LCS( $b, X, i - 1, j$ )
8  else PRINT-LCS( $b, X, i, j - 1$ )

```

Questions?

kychen@mail.ntust.edu.tw